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1. Introduction and summary

Type IIB superstring in an AdS5×S5 background is conjectured to be dual to N = 4 super

Yang-Mills theory in D = 4 dimensions. To fully exploit the duality one would need to

solve the world-sheet sigma model with the AdS5 × S5 target-space at the quantum level,

and in particular to understand its operator algebra. As a first step toward this ambitious

goal, we analyze in this paper the tree-level OPE of matter currents on the world-sheet.

The type IIB superstring in the AdS space with Ramond-Ramond flux can be formu-

lated as a sigma model with the target space which is the supermanifold PSU(2,2|4)
SO(4,1)×SO(5) . The

action in the Green-Schwarz (GS) formalism is known [1]. The pure spinor (PS) version

was proposed in [2]. In both these approaches the target-space supersymmetry is manifest.

However in the GS formulation where the world-sheet action is classically κ-invariant, the

covariant quantization of the sigma model is rather complicated due to non-linearities and

because gauge-fixing the κ-symmetry leads to fermionic second-class constraints. In the PS

formalism proposed by Berkovits, the main ingredients are the commuting left and right-

moving space-time spinors λα and λ̂α̂, which play the role of ghost variables and satisfy

the pure spinor constraint:

λγaλ = λ̂γaλ̂ = 0. (1.1)

The world-sheet superstring action is classically BRST-invariant in the Berkovits formula-

tion: due to the presence of a kinetic term for the fermionic currents the κ-symmetry of

the GS superstring action is replaced by a BRST-like symmetry whose charges are con-

structed from fermionic constraints and pure spinors. In both these formalisms an infinite
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set of non-local classically conserved charges has been found, which highly suggest the

integrability of the model [6, 5]. At the classical level these non-local charges have been

shown to be κ-invariant in the GS formalism and BRST-invariant in the PS formalism [7].

By cohomology arguments it was proved that the BRST invariance of the PS superstring

action survive at the quantum level [12]. Moreover the superstring action was explicitly

proved to be one-loop conformally invariant in [3]. The (classical) current algebra in the

hamiltonian formalism was analyzed in [14]. Here we will compute the operator product

expansion (OPE) of the matter currents.

In section 2 the effective action for the fluctuations fields is derived. The results for

the OPEs is presented in section 3. Our notation is summarized in the appendices, where

we also give some calculational details.

2. The action

In the pure spinor formalism the sigma model action describing an AdS5 × S5 background

with Ramond-Ramond flux is [2 – 5, 12]

SAdS =
1

α2

∫
d2z{< J2, J2 > +

3

2
< J3, J1 > +

1

2
< J3, J1 >}+

+
1

α2

∫
d2z{NcdJ

[cd]
+ N̂cdJ

[cd] +
1

2
NcdN̂

cd} +
1

α2
(Sλ + S

λ̂
), (2.1)

where <,> is the bilinear form expressed in terms of the super-trace, J = JATA, J = J
A
TA,

with TA the generators of the super-algebra and JA = (g−1∂g)A and J
A

= (g−1∂g)A are

the left invariant (super) currents constructed from g(x, θ, θ̂) which are elements of the

super-coset PSU(2,2|4)
SO(4,1)×SO(5) and (x, θ, θ̂) parameterize the D = 10, N = 2 superspace.

Ncd = 1
2ωγcdλ and N̂cd = 1

2 ω̂γcdλ̂ are the SO(4, 1) × SO(5) components of the Lorentz

currents for the pure spinor ghosts λα and λ̂α̂ and their conjugate momenta ωα and ω̂α̂,

respectively. Sλ and S
λ̂

are the free field actions for the pure spinors in the flat background.

The action is manifestly invariant under global PSU(2, 2|4) transformations which act

by left multiplication on the coset supergroup elements and it is invariant under local

SO(4, 1) × SO(5) gauge transformations which act by right multiplication on g.1 The

coupling constant is α = (λ)−
1

4 = (Ngs)
− 1

4 and the coefficients of the action are fixed in

such a way that the action is gauge invariant under local SO(4, 1)×SO(5) transformations,

according to the metric and the structure constant normalized as in the appendix.

Using the background field method [9, 3, 10], one can compute the one-loop effective

action. The mapping g is parameterized as a classical background plus quantum fluctua-

tions around the background: g = g̃eαX . The gauge invariance of the original action can

be used to fix X ∈ G/H0. Plugging g = g̃eαX in J , J and expanding up to the α2 order,

1Under a local gauge SO(4, 1) × SO(5) transformation with parameter ξ ∈ H0, Ji and J i transform as

δJi = [Ji, ξ], δJ i = [J i, ξ], while J0 and J0 transform as a connection δJ0 = ∂ξ + [J0, ξ], δJ0 = ∂ξ + [J0, ξ],

the ghost currents as δN = [N, ξ], δN̂ = [N̂, ξ], and the pure spinors and their conjugate momenta transform

as δλ = [λ, ξ], δω = [ω, ξ], analogously for the hatted spinors, [5, 12].
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the matter currents are given in terms of the X fields by:

Ji = J̃i + α(∂Xi + [J̃ ,X]i) +
α2

2
([[J̃ ,X],X]i + [∂X,X]i) + . . .

J i = J̃ i + α(∂Xi + [J̃ ,X]i) +
α2

2
([[J̃ ,X],X]i + [∂X,X]i) + . . . , (2.2)

where i = 1, 2, 3 labels the elements of the subalgebras Hi, i.e. Ji ≡ J|Hi
, J̃ and J̃ are the

classical currents, J̃ = g̃−1∂g̃, J̃ = g̃∂g̃.

Though X ∈ G/H0, the fluctuations can contain the gauge fields since the commutators

in (2.2) can contain J0 and J0. Thanks to the gauge invariance, the effective action is

independent of them [9], thus they can be gauged away, i.e. [J0,Xi] = [J0,Xi] = 0 for any

Xi. Furthermore J0 and J0 can have quantum fluctuations according to:

J0 = J̃0 + α[J̃ ,X]0 +
α2

2
([∂X,X]0 + [[J̃ ,X],X]0) + . . . ,

J0 = J̃0 + α[J̃ ,X]0 +
α2

2
([∂X,X]0 + [[J̃ ,X],X]0) + . . . . (2.3)

We will treat the Lorentz ghost currents as external ones.

Since we want to know the tree-level OPE for the matter currents, we need to compute

the action for the X fluctuations only to the first order in the external currents. Plugging

the expansion of the currents (2.2) and (2.3) in the action (2.1), one gets terms of zeroth

order in the X fields, which are the action for the background fields, linear terms in X,

which vanish by general arguments of QFT, and second order terms in the fluctuations.

Thus keeping all the terms of α2 order and neglecting all the contributions which are of

the second order in the classical currents,2 one obtains the following action:

S =

∫
d2z{ − ηabX

a∂∂Xb − η
αβ̂

Xα∂∂X β̂ − η
β̂α

X β̂∂∂Xα}+

+

∫
d2z

{
Xα

[
1

2
ηabf

b
αβ(

←−
∂ Ja + Ja

−→
∂ )

]
Xβ + Xα̂

[
1

2
ηabf

a

α̂β̂
(
←−
∂ J

b
+ J

b−→
∂ )

]
X β̂+

+ Xa[η
αβ̂

f β̂
aβ(

←−
∂ Jα + Jα

−→
∂ )]Xβ + Xa[ηα̂βfβ

aβ̂
(
←−
∂ J

α̂
+ J

α̂−→
∂ )]X β̂+

+ Xa

[
−

1

4
f

[cd]
ab (

←−
∂ Ncd + Ncd

−→
∂ ) −

1

4
f

[cd]
ab (

←−
∂ N̂cd + N̂cd

−→
∂ )

]
Xb+

+ Xα

[
−

1

2
f

cd

αβ̂
(
←−
∂ Ncd + Ncd

−→
∂ ) −

1

2
f

cd

αβ̂
(∂N̂cd + N̂cd∂)

]
X β̂

}
(2.4)

All the currents that are present in the action (2.4) are the classical ones (the˜is omitted in

the notation on what follows). From a diagrammatic point of view this means considering

all the tree-level diagrams, i.e. with one insertion of the external current, either matter

current JA, J
A

or Lorentz ghost current Ncd, N̂cd.

2For a dimensional analysis this implies neglecting also the terms of order ∂J .
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3. The tree-level interactions

In order to read off the propagators for the quantum fluctuations one has to invert pertur-

batively the operator between the X’s. The kinetic term is given by the (super) matrix:

A =




ηab(−∂∂) 0 0

0 0 η
αβ̂

(−∂∂)

0 ηα̂β(−∂∂) 0


 . (3.1)

The inverse of this matrix is given by:

A−1 =




ηab(−∂∂)−1 0 0

0 0 ηβα̂(−∂∂)−1

0 ηβ̂α(−∂∂)−1 0


 . (3.2)

where (−∂∂)−1 is formally the “free” propagators, namely (−∂∂)−1 = − 1
2π

log |y − z|2.

The coefficient in front of the propagator is fixed by the differential equation ∂∂ log |z|2 =

2πδ(2)(z, z).3 In this way the integral of the δ function is normalized to 1,
∫

d2zδ(2)(z, z) =

1.

If the operator can be represented as a sum of two matrices A and V , the inverse of

the matrix is perturbatively:

(A + V )−1 = A−1 − (A−1V A−1) + . . . (3.3)

where V is the matrix containing the tree-level interaction with the matter and the Lorentz

ghost currents. The entries of the matrix V are just the terms containing the currents in

the action (2.4), the terms off-diagonal divided by 1/2:

V11 = −
1

4
(f

[cd]
ab (

←−
∂ Ncd + Ncd

−→
∂ ) + f

[cd]
ab (

←−
∂ N̂cd + N̂cd

−→
∂ ))

V12 =
1

2
ηρρ̂f

ρ̂
aβ(

←−
∂ Jρ + Jρ

−→
∂ )

V13 = −
1

2
ηρρ̂f

ρ

aβ̂
(
←−
∂ J

ρ̂
+ J

ρ̂−→
∂ )

V22 =
1

2
ηabf

b
αβ(

←−
∂ Ja + Ja

−→
∂ )

V23 = −
1

4
(f

cd

αβ̂
(
←−
∂ Ncd + Ncd

−→
∂ ) + f

cd

αβ̂
(
←−
∂ N̂cd + N̂cd

−→
∂ ))

V33 =
1

2
ηabf

a

α̂β̂
(
←−
∂ J

b
+ J

b−→
∂ ). (3.4)

4. OPE

The general expression for the OPE of the currents is at the order considered:

JA(y)JB(z) = < J̃A(y)J̃B(z) > +α2
(

< ∂XA(y)∂XB(z) > +

+ < ∂XA(y)[J̃ ,X]B(z) > + < [J̃ ,X]A(y)∂XB(z) > +O(J2)
)
. (4.1)

3The δ function in the complex plane is normalized as in [13].
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The currents are taken normal-ordered to avoid the contractions on the same points. The

classical terms given by the propagator of two currents in (4.1) will be not considered and

the contractions on the last two terms in (4.1) must be done keeping in mind that these

contributions are already at the tree-level order, namely they already contain an external

leg. On what follows all the currents that appear in the r.h.s. of the OPE are the classical

ones. The results are proportional to the coupling constant α2, this overall factor is omitted

in the final result as well as the classical term.

Ja(y)Jd(0) ' (cl.) + α2(< ∂Xa(y)∂Xd(0) > + . . .) '

' −
ηad

2π

1

y2
+

1

4π
η[ad][ef ]N̂ef (0)

y

y2
−

1

4πy
η[ad][ef ]Nef (0). (4.2)

Ja(y)J
d
(0) ' (cl.) + α2(< ∂Xa(y)∂Xd(0) > + . . .) '

' −
1

4πy
η[ad][ef ]Nef (0) −

1

4πy
η[ad][ef ]N̂ef (0). (4.3)

J
a
(y)Jd(0) ' (cl.) + α2(< ∂Xa(y)∂Xd(0) > + . . .) '

' −
1

4πy
η[ad][ef ]Nef (0) −

1

4πy
η[ad][ef ]N̂ef (0). (4.4)

J
a
(y)J

d
(0) ' (cl.) + α2(< ∂Xa(y)∂Xd(0) > + . . .) '

' −
1

2πy2 ηad +
1

4π

y

y2 η[ad][ef ]Nef (0) −
1

4πy
η[ad][ef ]N̂ef (0). (4.5)

Ja(y)Jδ(0) ' α2(< ∂Xa(y)∂Xδ(0) > + < ∂Xa(y)[J3,X2]
δ(0) > +

+ < [J3,X3]
a(y)∂Xδ(0) > + . . .) '

1

2π

y

y2
f

a
γ̂ρ̂η

γ̂δJ
ρ̂
(0) +

1

πy
f

a
ρ̂γ̂ηγ̂δJ ρ̂(0).

(4.6)

Ja(y)J
δ
(0) ' α2(< ∂Xa(y)∂Xδ(0) > + < ∂Xa(y)[J3,X2]

δ(0) > +

+ < [J3,X3]
a(y)∂Xδ(0) > + . . .) '

1

2πy
f

a
γ̂ρ̂η

γ̂δJ ρ̂(0).

(4.7)

J
a
(y)Jδ(0) ' α2(< ∂Xa(y)∂Xδ(0) > + < ∂Xa(y)[J3,X2]

δ(0) > +

+ < [J3,X3]
a(y)∂Xδ(0) > + . . .) '

1

2πy
f

a
γ̂ρ̂η

γ̂δJ ρ̂(0). (4.8)

J
a
(y)J

δ
(0) ' α2(< ∂Xa(y)∂Xδ(0) > + < ∂Xa(y)[J3,X2]

δ(0) > +

+ < [J3,X3]
a(y)∂Xδ(0) > + . . .) '

1

2πy
f

a
γ̂ρ̂η

γ̂δJ
ρ̂
(0). (4.9)
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Ja(y)J δ̂(0) ' α2(< ∂Xa(y)∂X δ̂(0) > + < ∂Xa(y)[J1,X2]
δ̂(0) > +

+ < [J1,X1]
a(y)∂X δ̂(0) > + . . .) '

1

2πy
fa

ργηγδ̂Jρ(0). (4.10)

Ja(y)J
δ̂
(0) ' α2(< ∂Xa(y)∂X δ̂(0) > + < ∂Xa(y)[J1,X2]

δ̂(0) > +

+ < [J1,X1]
a(y)∂X δ̂(0) > + . . .) '

1

2πy
fa

ργηγδ̂J
ρ
(0). (4.11)

J
a
(y)J δ̂(0) ' α2(< ∂Xa(y)∂X δ̂(0) > + < ∂Xa(y)[J1,X2]

δ̂(0) > +

+ < [J1,X1]
a(y)∂X δ̂(0) > + . . .) '

1

2πy
fa

ργηγδ̂J
ρ
(0). (4.12)

J
a
(y)J

δ̂
(0) ' α2(< ∂Xa(y)∂X δ̂(0) > + < ∂Xa(y)[J1,X2]

δ̂(0) > +

+ < [J1,X1]
a(y)∂X δ̂(0) > + . . .) '

1

2π

y

y2 fa
ργηγδ̂Jρ(0) +

1

πy
fa

ργηγδ̂J
ρ
(0).

(4.13)

Jα(y)Jδ(0) ' α2(< ∂Xα(y)∂Xδ(0) > + < ∂Xα(y)[J2,X3]
δ(0) > +

+ < [J2,X3]
α(y)∂Xδ(0) > + . . .) '

1

2π

y

y2
fα

lγ̂ηγ̂δJ
l
(0) +

1

πy
fα

lγ̂ηγ̂δJ l(0).

(4.14)

J
α
(y)Jδ(0) ' α2(< ∂Xα(y)∂Xδ(0) > + < ∂Xα(y)[J2,X3]

δ(0) > +

+ < [J2,X3]
α(y)∂Xδ(0) > + . . .) '

1

2πy
fα

lγ̂ηγ̂δJ l(0). (4.15)

Jα(y)J
δ
(0) ' α2(< ∂Xα(y)∂Xδ(0) > + < ∂Xα(y)[J2,X3]

δ(0) > +

+ < [J2,X3]
α(y)∂Xδ(0) > + . . .) '

1

2πy
fα

lγ̂ηγ̂δJ l(0). (4.16)

J
α
(y)J

δ
(0) ' α2(< ∂Xα(y)∂Xδ(z) > + < ∂Xα(y)[J2,X3]

δ(0) > +

+ < [J2,X3]
α(y)∂Xδ(0) > + . . .) '

1

2πy
fα

lγ̂ηγ̂δJ
l
(0). (4.17)

J α̂(y)J δ̂(0) ' α2(< ∂Xα̂(y)∂X δ̂(0) > + < ∂Xα̂(y)[J2,X1]
δ̂(0) > +

+ < [J2,X1]
α̂(y)∂X δ̂(0) > + . . .) '

1

2πy
f α̂

lγηγδ̂J l(0). (4.18)

J
α̂
(y)J δ̂(0) ' α2(< ∂Xα̂(y)∂X δ̂(0) > + < ∂Xα̂(y)[J2,X1]

δ̂(0) > +

+ < [J2,X1]
α̂(y)∂X δ̂(0) > + . . .) '

1

2πy
f α̂

lγηγδ̂J
l
(0). (4.19)
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J α̂(y)J
δ̂
(0) ' α2(< ∂Xα̂(y)∂X δ̂(0) > + < ∂Xα̂(y)[J2,X1]

δ̂(0) > +

+ < [J2,X1]
α̂(y)∂X δ̂(0) > + . . .) '

1

2πy
f α̂

lγηγδ̂J
l
(0). (4.20)

J
α̂
(y)J

δ̂
(0) ' α2(< ∂Xα̂(y)∂X δ̂(0) > + < ∂Xα̂(y)[J2,X1]

δ̂(0) > +

+ < [J2,X1]
α̂(y)∂X δ̂(0) > + . . .) '

1

2π

y

y2 f α̂
lγηγδ̂J l(0) +

1

πy
f α̂

lγηγδ̂J
l
(0).

(4.21)

J α̂(y)Jδ(0) ' (cl.) + α2 < ∂Xα̂(y)∂Xδ(0) > + . . . '

' −
1

2πy2
ηα̂δ +

1

4π

y

y2
ηα̂βf

[ef ]

βγ̂ ηγ̂δN̂ef (0) −
1

4πy
ηα̂βf

[ef ]

βγ̂ ηγ̂δNef (0).

(4.22)

J
α̂
(y)Jδ(0) ' (cl.) + α2 < ∂Xα̂(y)∂Xδ(0) > + . . . '

' −
1

4πy
ηα̂βf

[ef ]

βγ̂ ηγ̂δNef (0) −
1

4πy
ηα̂βf

[ef]

βγ̂ ηγ̂δN̂ef (0). (4.23)

J α̂(y)J
δ
(0) ' (cl.) + α2 < ∂Xα̂(y)∂Xδ(0) > + . . . '

' −
1

4πy
ηα̂βf

[ef ]

βγ̂ ηγ̂δNef (0) −
1

4πy
ηα̂βf

[ef]

βγ̂ ηγ̂δN̂ef (0). (4.24)

J
α̂
(y)J

δ
(0) ' (cl.) + α2 < ∂Xα̂(y)∂Xδ(0) > + . . . '

' −
1

2πy2 ηα̂δ +
1

4π

y

y2 ηα̂βf
[ef ]

βγ̂ ηγ̂δNef (0) −
1

4πy
ηα̂βf

[ef ]

βγ̂ ηγ̂δN̂ef (0). (4.25)

All the current OPEs respect the Z4-grading of the psu(2, 2|4) super-algebra. In fact the

OPE of two currents with indices A and B is proportional to a current with index C = A+B

(mod 4). Of course this reflects the fact that the tree-level interactions between the X fields

respect the Z4-automorphism of the super-algebra, since the couplings which we can obtain

are allowed by the matrices (3.1) and (3.4).

Using the above results we have checked that the OPEs between the currents and the

classical equations of motion4 derived from (2.1) vanish.

We have checked also that the OPEs found here reproduce commutators of the currents

computed in [14] after the Wick rotation to the Minkowskian world-sheet. Because of our

gauge choice J0 and J0 are absent in the commutators and the constraints, which are

present in [14], vanish.
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A. Notation

The psu(2, 2|4) super Lie algebra has a special inner symmetry, the so-called Z4-auto-

morphism [9], that allows to decompose it in

G = H0 ⊕H1 ⊕H2 ⊕H3. (A.1)

The space Hk is the eigenspace with respect to the Z4 action and the corresponding eigen-

value is ık. Thus H0 is the locus of fixed points with respect the Z4 transformation. Since

the Z4-grading is an automorphism of the super Lie algebra, the decomposition (A.1) re-

spects the structure of the algebra, i.e. satisfies [Hm,Hn] ⊂ Hm+n (mod 4) and also the

bilinear form is Z4-invariant:

< Hm,Hn >= 0 unless m + n = 0 (mod 4) (A.2)

The subalgebra H0 is exactly the invariant subalgebra for the gauge SO(4, 1) × SO(5)

group. The H2 subalgebra is the space for the remaining bosonic elements (it contains the

“translation” generators), while H1 and H3 contain the fermionic elements (“supersymme-

try” generators).

Therefore the generators of the super-algebra are decomposed in:

Ta ∈ H2 Tα ∈ H1 Tα̂ ∈ H3 T[cd] ∈ H0, (A.3)

and consequently the currents:

J = g−1∂g = JATA = JaTa + JαTα + J α̂Tα̂ + J [cd]T[cd]

J = g−1∂g = J
A
TA = J

a
Ta + J

α
Tα + J

α̂
Tα̂ + J

[cd]
T[cd]. (A.4)

The indices A = (a, [cd], α, α̂) label the tangent spaces of the super Lie algebra; in particular

a = (a, a′), a = 0, . . . , 4 labels the so(4, 1) vector index for AdS5, a′ = 5, . . . , 9 labels the

so(5) vector index for S5, [cd] = ([cd], [c′d′]) and α, α̂ = 1, ..., 16 label the two sixteen-

component Majorana-Weyl spinors in D = 10.

In the curved background the two fermionic indices can couple thanks to the matrix δαα̂ =

(γ01234)αα̂, with 0, 1, 2, 3, 4 the directions of AdS5.

The super-trace is cyclic up to a minus sign, i.e.

Str(XY ) = (−1)deg(X)deg(Y )Str(Y X), (A.5)

where deg(X) = 0 if X is even and deg(X) = 1 if X is odd. This is consistent with the

statistic. The relation5

Str(TA[TB , TC ]) = Str([TA, TB ]TC), (A.6)

5The commutator has to be understood as a graded commutator: [TA, TB ] = TATB − (−1)|A||B|TBTA,

where |A| = 1 for odd generators and |A| = 0 for even generators.
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furnishes some important graded properties for the structure constants. The non-vanishing

structure constants for the psu(2, 2|4) super-algebra are the following:

f
[ab]

αβ̂
=

1

2
(γab) γ

α δ
γβ̂

f
[a′b′]

αβ̂
= −

1

2
(γa′b′) γ

α δ
γβ̂

fα
[cd]β = −fα

β[cd] =
1

2
(γcd)

α
β

f α̂

[cd]β̂
= −f α̂

β̂[cd]
=

1

2
(γcd)

α̂

β̂
f

a
αβ = f

a
βα = γ

a
αβ f β̂

aβ = −f β̂
βa = −(γa)βγδγβ̂

f
a

α̂β̂
= f

a

α̂β̂
= γ

a

α̂β̂
fα

aα̂ = −fα
α̂a = (γa)α̂β̂

δαβ̂ f
[ef ]
ab = −f

[ef ]
ba = δ[e

a δ
f ]
b

f
[e′f ′]
a′b′ = −f

[e′f ′]
b′a′ = −δ

[e′

a′ δ
f ′]
b′ f

e

[cd]b = −f
e

b[cd] = ηb[cδ
e

d]

f
[gh]

[cd][ef ] = ηceδ
[g

d δ
h]
f − ηcf δ

[g

d δh]
e + ηdfδ

[g
c δh]

e − ηdeδ
[g
c δ

h]
f (A.7)

The metric ηAB is given by:

ηab η
αβ̂

= −η
β̂α

= δ
αβ̂

η[a′b′][c′d′] = −ηa′[c′ηd′]b′ η[ab][cd] = ηa[cηd]b (A.8)

Furthermore if a super-matrix is defined as:

K =

[
A C

D B

]
, (A.9)

with A and B even matrices and C and D odd, then the super-transpose is given by:

KST =

[
AT −DT

CT BT

]
. (A.10)

A.1 Gamma matrices in D = 10 dimensions

In D = 10 dimensions in the reducible Majorana-Weyl representations the (32× 32) Dirac

gamma matrices Γ
m
AB are real and symmetric and they consist of two symmetric 16 × 16

matrices γ
m
αβ, γm αβ on the off-diagonal.6

Γm =

[
0 γm αβ

γ
m
αβ 0

]
. (A.11)

In the case of the type IIB superstring the two Majorana-Weyl spinors have the same

chirality, thus they transform in the same SO(9, 1) representation. Following [8] it is

possible to construct explicitly the γ matrices from the SO(8) gamma matrices which

themselves are direct product of Pauli matrices:

γi
αβ =

[
0 σi aȧ

σi
bḃ

0

]
, (A.12)

where i = 1, . . . , 8 and the σi
bḃ

are the antisymmetric real SO(8) Pauli matrices and they

satisfy the following algebra:

σi
aȧσ

j
ȧb + σj

aȧσ
i
ȧb = 2δijδab (A.13)

6Since we are describing gamma matrices in a flat space we adopt the standard notation for the indices:

m = 0, . . . , 9 is the SO(9, 1) vector index.
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with σi
ȧb the transpose of σi

bȧ.
7 A ninth one that anti-commutes with these eight is given

by [11]:

γ9
αβ = γ9 αβ =

[
18 0

0 −18

]
, (A.15)

and the values of γ0 αβ and γ0
αβ are similarly defined in order to be consistent with their

algebra:

γ0
αβ =

[
−18 0

0 −18

]
, γ0 αβ =

[
18 0

0 18

]
. (A.16)

B. OPE

In this section the OPEs of the matter currents will be treated explicitly. The overall factor

α2 is omitted in the final results.

Ja(y)Jd(z) = α2 < ∂Xa(y)∂Xd(z) > + . . . =

=−
1

2π
ηad∂y∂z log |y−z|2+

1

16π2
η[ad][ef ]

∫
d2ω{−∂y∂ω log |y−ω|2Nef (ω)∂z log |ω − z|2 +

+∂y log |y − ω|2Nef (ω)∂z∂ω log |ω − z|2} +

+
1

16π2
η[ad][ef ]

∫
d2ω{−∂y∂ω log |y − ω|2N̂ef (ω)∂z log |ω − z|2 +

+∂y log |y − ω|2N̂ef (ω)∂z∂ω log |ω − z|2} + O(J2). (B.1)

The integrand containing Nef is a δ function (up to a minus sign) and so it can be easily

integrated. Furthermore all the currents are expanded around z, i.e. N̂ef (ω) ∼= N̂ef (z)+ . . .

and Nef (ω) ∼= Nef (z)+ . . ., the terms with the derivatives of the currents can be neglected

at this order, just by dimensional analysis. Setting z = 0 the OPE becomes:

Ja(y)Jd(0) ' −
ηad

2π

1

y2
−

1

4πy
η[ad][ef ]Nef (0) +

1

4π
η[ad][ef ]N̂ef (0)

y

y2
. (B.2)

7A specific set for the σ matrices is given in [8]:

σ
1 = ε × ε × ε σ

2 = 1 × τ1 × ε σ
3 = 1 × τ3 × ε σ

4 = τ1 × ε × 1

σ
5 = τ3 × ε × 1 σ

6 = ε × 1 × τ1 σ
7 = ε × 1 × τ3 σ

8 = 1 × 1 × 1, (A.14)

where τi are the Pauli matrices and ε = ıτ2.
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Ja(y)J
d
(z) = (cl.) + α2 < ∂Xa(y)∂Xd(z) > + . . . =

=−
1

2π
ηad∂y∂z log |y−z|2 +

1

16π2
η[ad][ef ]

∫
d2ω{−∂y∂ω log |y−ω|2Nef (ω)∂z log |ω − z|2 +

+∂y log |y − ω|2Nef (ω)∂z∂ω log |ω − z|2} +

+
1

16π2
η[ad][ef ]

∫
d2ω{−∂y∂ω log |y − ω|2N̂ef (ω)∂z log |ω − z|2 +

+∂y log |y − ω|2N̂ef (ω)∂z∂ω log |ω − z|2}

' −
1

4π(y − z)
η[ad][ef ]Nef (z) −

1

4π(y − z)
η[ad][ef ]N̂ef (z), (B.3)

where the first term in the second line is a δ function and it will be not considered here,

since only singular terms are taken in account; the result (4.3) is obtained with z = 0.

Since the procedure is completely analogous for the remaining bosonic components of the

currents, we will not rewrite them, the results are listed in (4.4), (4.5).

In the case of the OPE between J2J1, J2J3, J1J1 and J3J3 there are contributions from

the commutators in (4.1), since the X fields can propagate ”freely”, as one can understand

from the entries of the matrix (3.1) and from the underlying super-algebra. We present

explicitly only the OPE for the JJ components in each case, since for the other components

the OPEs are completely analogous.

Ja(y)Jδ(0) = α2(< ∂Xa(y)∂Xδ(0) > + < ∂Xa(y)[J̃3,X2]
δ(0) > +

+ < [J̃3,X3]
a(y)∂Xδ(0) > + . . .) (B.4)

The first term is

< ∂Xa(y)∂Xδ(0) >= ∂y∂z < Xa(y)Xδ(z) > |z=0 =

=
1

8π2
f

a
γ̂ρ̂η

γ̂δ

∫
d2ω{−∂y∂ω log |y − ω|2J

ρ̂
(ω)∂z log |ω − z|2+

+∂y log |y − ω|2J
ρ̂
∂z∂ω log |ω − z|2}|z=0 =

1

2π

y

y2
f

a
γ̂ρ̂η

γ̂δJ
ρ̂
(0), (B.5)

the second term:

< ∂Xa(y)[J3,X2]
δ(0) > = − < ∂Xa(y)f δ

bρ̂X
b(0)J ρ̂(0) >=

=
1

2π
ηab∂y log |y − z|2fρ

bρ̂J
ρ̂(z)|z=0 =

=
1

2πy
f

a
ρ̂γ̂ηγ̂δJ ρ̂(0), (B.6)

and the last term is:

< [J3,X3]
a(y)∂Xδ(0) > = < f

a
ρ̂γ̂J ρ̂(y)X γ̂(y)∂Xδ(0) >=

= −
1

2π
f

a
ρ̂γ̂J ρ̂(y)ηγ̂δ∂z log |y − z|2|z=0 =

=
1

2πy
f

a
ρ̂γ̂J ρ̂(0)ηγ̂δ. (B.7)

Therefore one gets:

Ja(y)Jδ(0) '
1

2π

y

y2
f

a
γ̂ρ̂η

γ̂δJ
ρ̂
(0) +

1

πy
f

a
ρ̂γ̂ηγ̂δJ ρ̂(0). (B.8)
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Ja(y)J δ̂(0) ' α2(< ∂Xa(y)∂X δ̂(0) > + < ∂Xa(y)[J̃1,X2]
δ̂(0) > +

< [J̃1,X1]
a(y)∂X δ̂(0) > + . . .). (B.9)

The first term:

< ∂Xa(y)∂X δ̂(0) >= −∂y∂z(A
−1V A−1)aδ̂|z=0 =

=
1

8π2
fa

ργηγδ̂

∫
d2ω{−∂y∂ω log |y − ω|2Jρ(ω)∂z log |ω − z|2+

+∂y log |y − ω|2Jρ(ω)∂ω∂z log |ω − z|2}|z=0 (B.10)

The second term:

− < ∂Xa(y)f δ̂
bρX

b(0)Jρ(0) > =
1

2π
ηabf δ̂

bρJ
ρ(z)∂y log |y − z|2|z=0 =

=
1

2π
fa

ργηγδ̂Jρ(0)
1

y
(B.11)

The third term:

< fa
ργJρ(y)Xδ(y)∂X δ̂(0) >= −

1

2π
fa

ργηγδ̂Jρ(y)∂z log |y − z|2|z=0 (B.12)

Thus the OPE is:

Ja(y)J δ̂(0) '−
1

2πy
fa

ργηγδ̂Jρ(0) +
1

2πy
fa

ργηγδ̂Jρ(0) +
1

2πy
fa

ργηγδ̂Jρ(0) '
1

2πy
fa

ργηγδ̂Jρ(0).

(B.13)

Jα(y)Jδ(0) ' α2(< ∂Xα(y)∂Xδ(0) > + < ∂Xα(y)[J2,X3]
δ(0) > +

< [J2,X3]
α(y)∂Xδ(0) > + . . .) (B.14)

The first term:

< ∂Xα(y)∂Xδ(0) >= −∂y∂z(A
−1V A−1)αδ|z=0 =

=
1

8π2
fα

lγ̂ηγ̂δ

∫
d2ω{−∂y∂ω log |y − ω|2J

l
(ω)∂z log |ω − z|2+

+∂y log |y − ω|2J
l
(ω)∂z∂ω log |ω − z|2}|z=0 =

1

2π

y

y2
fα

lγ̂ηγ̂δJ
l
(0) (B.15)

The second term:

< ∂Xα(y)f δ

lβ̂
J l(0)X β̂(0) > = −

1

2π
ηαβ̂f δ

lβ̂
J l(z)∂y log |y − z|2|z=0

=
1

2π
fα

lγ̂ηγ̂δJ l(0)
1

y
(B.16)

The third term:

< fα

lβ̂
J l(y)X β̂(y)∂Xδ(0) >= −

1

2π
fα

lβ̂
J l(y)ηβ̂δ∂z log |y − z|2|z=0 (B.17)
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Therefore the OPE is given by:

Jα(y)Jδ(0) '
1

2π

y

y2
fα

lγ̂ηγ̂δJ
l
(0) +

1

πy
fα

lγ̂ηγ̂δJ l(0). (B.18)

J α̂(y)J δ̂(0) ' α2(< ∂Xα̂(y)∂X δ̂(0) > + < ∂Xα̂(y)[J2,X1]
δ̂(0) > +

< [J2,X1]
α̂(y)∂X δ̂(0) > + . . .) (B.19)

The first term is:

< ∂Xα̂(y)∂X δ̂(0) >= −∂y∂z(A
−1V A−1)α̂δ̂|z=0 =

=
1

8π2
f α̂

lγηγδ̂

∫
d2ω{−∂y∂ω log |y − ω|2J l(ω)∂z log |ω − z|2+

+∂y log |y − ω|2J l(ω)∂z∂ω log |ω − z|2}|z=0 (B.20)

The second term is:

< ∂Xα̂(y)f δ̂
lβJ l(0)Xβ(0) >=

1

2π
ηα̂βf δ̂

βlJ
l(z)∂y log |y − z|2|z=0 =

1

2πy
f α̂

lγηγδ̂J l(0) (B.21)

The third term:

< [J2,X1]
α̂(y)∂X δ̂(0) >= −

1

2π
f α̂

lγηγδ̂J l(y)∂z log |y − z|2|z=0 (B.22)

Thus the OPE is:

J α̂(y)J δ̂(0) ' −
1

2πy
f α̂

lγηγδ̂J l(0)
1

2πy
f α̂

lγηγδ̂J l(0) +
1

2πy
f α̂

lγηγδ̂J l(0) '

'
1

2πy
f α̂

lγηγδ̂J l(0). (B.23)

In the case of J3J1 OPE the same algebraic structure of J2J2 is involved, therefore we

present briefly the result.

J α̂(y)Jδ(0) = (cl.) + α2 < ∂Xα̂(y)∂Xδ(0) > + . . . '

' ( −
1

2π
ηα̂δ∂z∂y log |y − z|2+

+
1

16π2
ηα̂βf

[ef ]

βγ̂ ηγ̂δ

∫
d2ω[−∂y∂ω log |y − ω|2Nef (ω)∂z log |ω − z|2+

+∂y log |y − ω|2Nef (ω)∂z∂ω log |ω − z|2 − ∂y∂ω log |y − ω|2N̂ef (ω)∂z log |ω − z|2+

+∂y log |y − ω|2N̂ef (ω)∂z∂ω log |ω − z|2])|z=0 '

' −
1

2πy2
ηα̂δ +

1

4π

y

y2
ηα̂βf

[ef ]

βγ̂ ηγ̂δN̂ef (0) −
1

4πy
ηα̂βf

[ef ]

βγ̂ ηγ̂δNef (0), (B.24)

where the classical term is omitted.
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C. Classical equations of motion

We now derive the classical equations of motion from the action (2.1). Under small varia-

tions of the fields g the currents satisfy [5, 9]:

δg = gX δg−1 = −Xg−1, X ∈ Hi

δJi = ∂X + [J,X]i J i = ∂X + [J,X]i
δJ0 = [J,X]0 δJ0 = [J,X]0

δN = [N,Λ] δN̂ = [N̂ , Λ̂], (C.1)

where for the variation of the Lorentz ghost currents the gauge transformation is used

since this is the most general covariant variation which respects the SO(4, 1) × SO(5)

symmetry [5]. Furthermore under gauge transformation for the pure spinor actions Sλ and

Ŝ
λ̂

we have δSλ = −N [cd]∂Λ[cd] and δŜ
λ̂

= −N̂∂Λ̂[cd]. Plugging (C.1) in the action (2.1)

and using the Maurer-Cartan identities ∂J − ∂J + [J, J ] = 0 one gets:

∇J2 = [J3, J3] +
1

2
[N,J2] −

1

2
[J2, N̂ ]

∇J2 = −[J1, J1] +
1

2
[N,J2] −

1

2
[J2, N̂ ]

∇J3 =
1

2
[N,J3] −

1

2
[J3, N̂ ]

∇J3 = −[J1, J2] − [J2, J1] +
1

2
[N,J3] −

1

2
[J3, N̂ ]

∇J1 = [J3, J2] + [J2, J3] +
1

2
[N,J1] −

1

2
[J1, N̂ ]

∇J1 =
1

2
[N,J1] −

1

2
[J1, N̂ ]

∇N =
1

2
[N, N̂ ]

∇N̂ = −
1

2
[N, N̂ ], (C.2)

where the covariant derivatives are ∇ = ∂ + [J0, ] and ∇ = ∂ + [J0, ].
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